COURSE INFORMATON						
Course Title	Code	Semester	L+P Hour	L+P Hour Credits	ECTS	
Principles of Electrochemical Engineering	CHBE 577	1 or 2	3+0	3	10	

Prerequisites	None
r 	
Language of Instruction	English
Course Level	Graduate Degree
Course Type	Technical Elective
Course Coordinator	
Instructors	Assistant Prof. Dr. Levent Organ
Assistants	
Goals	The aim of this course is to provide students with knowledge and abilities to solve problems related to electrochemical engineering.
Content	Electrohemical thermodynamics (electrochemical potential, electrochemical reaction equilibrium, Nernst equation); Electrode kinetics (rate laws, Buttler-Volmer equation, reaction mechanisms); Mass and charge transfer in electrochemical systems (transport in dilute solutions, conservation of mass and charge); Applications of potential theory (primary, secondary and tertiary current distributions); convective transport (rotating electrodes)

Course Learning Outcomes	Program Learning Outcomes	Teaching Methods	Assessment Methods
Knowledge about electrohemical thermodynamics	1, 2, 3, 4	1, 2	A, C
Knowledge about electrode kinetics	1, 2, 3, 4	1, 2	A, C
Knowledge about fluid mechanics, mass and charge transfer in electrochemical systems	1, 2, 3, 4	1, 2	A, C
Knowledge about current distributions	1, 2, 3, 4	1, 2	A, C

Ability to communicate effectively both orally and in writing in English via preparation of a project report and a presentation	8	5	D
--	---	---	---

Teaching Methods:	1: Lecture, 2: Question-Answer, 3: Lab, 4: Case-study, 5: Scientific article critique
Assessment Methods:	A: Testing, B: Experiment, C: Homework, D: Project

	COURSE CONTENT				
Week	Topics	Study Materials			
1	INTRODUCTION: Overview of electrochemical processes	Lecture notes, library resources			
2	ELECTRODE KINETICS: Polarization diagrams; Rate laws; Buttler-Volmer equation	Lecture notes, library resources			
3	ELECTRODE KINETICS: Mechanisms, Multiple reactions	Lecture notes,			
4	ELECTRODE KINETICS: Electric double layer	Lecture notes, library resources			
5	ELECTROCHEMICAL THERMODYNAMICS: Electrochemical potential, Activities and activity coefficients; Electrochemical reaction equilibrium	Lecture notes, library resources			
6	ELECTROCHEMICAL THERMODYNAMICS: Cells with liquid junctions; Cell potentials; Nernst equation				
7	7 ELECTROCHEMICAL THERMODYNAMICS: Pourbaix diagrams; Reference Electrodes				
8	TRANSPORT PHENOMENA IN ELECTROCHEMICAL SYSTEMS: Transport in dilute solutions; conservation of mass and charge	Lecture notes, library resources			
9	TRANSPORT PHENOMENA IN ELECTROCHEMICAL SYSTEMS: Electrode boundary conditions; Limiting cases of boundary conditions and governing equations	Lecture notes, library resources			
10	CURRENT DISTRIBUTIONS: Classification; Wagner number; Primary, secondary and tertiary current distributions	Lecture notes, library resources			
11	CURRENT DISTRIBUTIONS: Mass transfer-limited current distributions	Lecture notes, library resources			
12	CONVECTIVE TRANSPORT: Fluid flow and mass transfer to a rotating disk electrode	Lecture notes, library resources			
13	CONVECTIVE TRANSPORT: Rotating ring-disk and rotating cylinder electrodes	Lecture notes, library resources			
14 PRESENTATIONS		Lecture notes, library resources			

RECOMMENDED SOURCES				
Textbook				
Additional Resources	 Newman, J. and Thomas-Alyea, K. E.; "Electrochemical Systems", 3rd ed., Wiley-Interscience, 2004 Bard, Allen J., and Larry R. Faulkner. "Electrochemical Methods: Fundamentals and Applications", 2nd ed., Wiley, 2001 Geoffrey, P., "Electrochemical Engineering Principles", Prentice Hall, 1991 West, A., "Electrochemistry and Electrochemical Engineering", CreateSpace Independent Publishing Platform, 2012 Scientific articles from the library resources 			

	MATERIAL SHARING
Documents	
Assignments	
Exams	

ASSESSMENT				
IN-TERM STUDIES	NUMBER	PERCENTAGE		
Midterm	2	42.8		
Project	1	28.6		
Homework	6	28.6		
Total		100.		
CONTRIBUTION OF FINAL EXAMINATION TO OVERALL GRADE		30.0		
CONTRIBUTION OF IN-TERM STUDIES TO OVERALL GRADE		70.0		
Total		100.		

COURSE CATEGORY

Field/Expertise Courses

	COURSE'S CONTRIBUTION TO PROGRAM	
No	Program Learning Outcomes	Contribution

		1	2	3	4	5
1	Acquire expanded and in-depth information via performing scientific research in the field of Chemical Engineering, evaluate, interpret and implement knowledge.				х	
2	Be knowledgable in the contemporary techniques and methods applied in Chemical Engineering and their respective constraints.				х	
3	Be cognizant of the novel and developing applications of his/her profession, study and learn them as required.				x	
4	Formulate Chemical Engineering problems, develop methods to solve them and implement innovative techniques in solutions.				x	
5	Design and conduct analytical modeling and experimental research, analyze and interpret complex problems encountered in this process.					
6	Develop novel and/or original ideas and methods; conceive innovative solutions in systems, component and process design.					
7	Complete information via processing limited or incomplete data by the use of scientific methods and implement it; integrate knowledge from different disciplines.					
8	Communicate in at least one foreign language at the level of European Language Portfolio B2 orally and in writing.					x
9	Communicate stages and results of his/her studies in a systematic and clear manner orally or in writing in intra or interdisciplinary national and international settings.					
10	Defines societal and environmental aspects of Chemical Engineering applications.					
11	Observe social, scientific and ethical values during collection, interpretation, and dissemination of data and in all professional activities.					
12	Lead multidisciplinary teams, develop solution methodologies for complex problems and take responsibility.					

ECTS ALLOCATED BASED ON STUDENT WORKLOAD BY THE COURSE DESCRIPTION				
Activities	Quantity	Duration (Hour)	Total Workload (Hour)	
Course Duration	14	3	42	
Hours for off-the-classroom study (Pre-study, practice)	14	10	140	
Midterm Exam	2	2	4	
Project	1	30	30	
Homeworks	6	4	24	
Final Exam	1	3	3	
Total Work Load			243	

Total Work Load / 25 (h)	9.7
ECTS Credit of the Course	10